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ABSTRACT 

The goal of this research was to calibrate and test geophysical methods for the 

detection of disseminated sulfides in the area of the Haile Gold Mine, South Carolina. 

The work focused on the calibration of high resolution gravity, and helicopter 

electromagnetic (EM) and magnetic data provided by OceanaGold. While high resolution 

potential field data (gravity and magnetics) has not been proven to be effective at small 

scales in exploration for disseminated sulfides, there is a strong regional correlation 

between high amplitude gravity and magnetic anomalies and the most productive gold 

mines in the Carolina terrane. Helicopter EM methods have been shown to be effective in 

distinguishing sedimentary from volcanic-dominated sediments in the metamorphic rocks 

of the Carolina terrane. The interpretation of the gravity and magnetic data utilized tilt 

derivatives, reduced to pole anomalies (RTP), shaded relief, Power spectrum, Analytical 

signal, Source parameter imaging (SPI), 3-D Euler deconvolution, upward continuation, 

and 2-D forward density modeling. The most surprising result was that over the Haile 

Mine, the residual gravity anomalies, tilt derivatives, and analytic signal show positive 

anomalies correlated with the location of a disseminated ore body. The gravity field over 

the ore body can be interpreted as produced by 4% pyrite and molybdenite. 

Electromagnetic (EM) anomalies are also spatially associated with the Haile ore bodies. 

Cultural signals in the EM data can be minimized with high pass filtering. The edges of a 

granite pluton are clearly illuminated by the shaded relief, tilt derivative, Euler 
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deconvolution, and analytic signal of the high resolution magnetic field. The RTP 

magnetic field shows NW-trending Jurassic dikes as well as ENE-trending Alleghanian 

dikes. An oval pattern in the magnetic SPI outlines the Brewer gold mine area.
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CHAPTER 1 

INTRODUCTION 

1.1 Hypothesis 

 The meta-volcanic rocks of the Haile Mine area (Persimmon Fork Formation) are 

characterized by slightly higher gravity, magnetic, and conductivity anomalies 

than the meta-sedimentary rocks of the Haile Mine area (Richtex Formation).  

 The largest magnetic anomalies are associated with Jurassic mafic dikes.  

 Positive magnetic and EM anomalies are spatially associated with the Haile ore 

bodies. These are produced by molybdenite, pyrite, or other disseminated ore 

associated minerals.  

1.2 Background 

The Haile Gold Mine property, the Brewer gold mine to the northeast, and the 

Ridgeway gold mine to the southwest, are located in the Carolina terrane (Figure 1.1), 

part of a volcanic island arc that formed off the coast of Gondwana, hundreds of miles 

from North America (Laurentia). The Carolina terrane extends for more than 500 km 

from Virginia to Georgia, with a maximum width of 140km in central North Carolina. All 

the gold deposits are hosted in similar geologic settings near the contact between 

metamorphosed volcanoclastic and metamorphosed sedimentary rocks of Neoproterozoic 

to Early Cambrian age. The Carolina terrane was accreted during Paleozoic time during
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the Acadian-Neoacadian orogenic event. An intrusive magmatic and metamorphic 

overprint is found mostly in the western portions of the Carolina terrane as a result of 

oblique accretion with Laurentia, progressing from north to south. The Carolinia terrane 

is separated from the Appalachian Inner Piedmont by the Central Piedmont low-angle 

shear zone (Dennis and Wright 1997; Hibbard 2000; Hibbard et al. 2002). 

The Carolina terrane is considered unrelated to other Appalachian terranes 

because of differences in age and composition. Cambrian-age rocks with limestone and 

shale formations comprise much of the Appalachian terranes. The Carolina terrane 

contains low-grade meta-igneous and meta-sedimentary rocks of Neoproterozoic to Late 

Cambrian age (Secor et al., 1983). The Carolina terrane is composed of greenschist facies 

metamorphosed sedimentary and volcanic rocks bounded by amphibolite grade rocks of 

the Charlotte belt to the northwest and the Kiokee belt to the southeast (Feiss, 1982), 

Figure 1.2.  

By U-Pb dating of zircon and the fossil evidence, the Carolina terrane is dated as 

late Neoproterozoic to Cambrian age, 630 to 520 Ma (Hibbard et al. 2002).  Rock type 

transitions from felsic to mafic submarine volcanics (Persimmon Fork Formation) and 

mudstones to turbidite clastics (Ritchtex Formation) suggest an intra-arc basin tectonic 

setting (Ayuso et.al., 2005). U-Pb zircon dating of the meta-sediment and meta-volcanic 

units at the Haile mine give an age range of 530 to 550 Ma, and Rhenium-Osmium dating 

of the molybdenite minerals, and 40Ar/39Ar dating of biotite indicate that the 

mineralization occurred from 552 to 558 Ma (Mobley et al., 2014).  
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In the eastern Carolina terrane in South Carolina, the Long Town granite dated at 

550 Ma intrudes the Persimmon Fork Formation. Dennis and Wright (1997) reported that 

plutonic mafic- ultramafic complexes intruded the northwestern Carolina terrane along 

the Piedmont suture. U-Pb gives ages for these complexes between 580 to 535Ma. They 

are therefore not a result of accretion to North America, but occurred as a result of arc 

rifting when the Carolinia terrane was located in peri-Gondwana.  

The regional magnetic map of South Carolina is divided into two provinces along 

a line known as the Fall Line: the Appalachian piedmont province is characterized by 

highly deformed and metamorphosed sedimentary and igneous rocks of Precambrian and 

Paleozoic age, and the Atlantic coastal plain sediments province consists of semi-

consolidated young sedimentary rocks of upper Cretaceous to recent age (Bell et al, 1974; 

Snoke et al., 1977; Popenoe and Zietz 1977). The Coastal plain sand overlies older 

igneous and metamorphic rocks. Popenoe and Zietz (1977) compiled a coastal plain 

thickness map based on the well and seismic data (figure A.1). The coastal plain 

thickness increases to the southeast. Near the Fall line, the basement rocks have a similar 

composition to the Piedmont rocks (Daniels 1974). In general, mafic rocks are more 

magnetic than felsic varieties, but this is “not always true” (Popenoe and Zietz 1977). 

West of the Fall Line where the sources are exposed, two granite plutons (Liberty 

Hill and Pageland) exhibit high magnetic and low gravity anomalies. Based on their 

magnetic signature, these plutons were interpreted to have been emplaced after the last 

regional metamorphic event. Northwest magnetic trends over the Atlantic coastal plain 

are correlated with diabase dikes of Jurassic or Triassic age (Popenoe and Zietz 1977). 

Figure A.2 is a dike distribution map from Popenoe and Zietz (1977). 
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1.3 Stratigraphy  

Three metavolcanic-dominated sequences of Neoproterozoic to Cambrian age 

(Figure 1.3) comprise the bulk of the Carolina terrane. These sequences formed 

separately in distinct tectonic settings (Snider et al. 2014, Hulse 2008).The Virgilian 

sequence is the oldest, from north-central North Carolina to South-central Virginia, 

interpreted to have been deposited in shallow water (Hibbard et al. 2002). 

The Albemarle sequence extending from North Carolina to Georgia is the 

youngest, and it contains the units that host most of the known gold deposits and most of 

the new discoveries. It is estimated to be greater than 15 km thick (Nora et al 2012, 

Hibbard et al 2002). The sequence is covered by onlapping sediments of the Atlantic 

Coastal Plain which run right up against the gold deposits in the vicinity of Haile and 

Brewer (Foley et al. 2002). 

The Albemarle sequence in South Carolina is composed of four formations. The 

metasedimentary rocks, which consist of 5 km of the Richtex, Emory, and Asbill Pond 

formations overlie a 3-km thick sequence of the Persimmon Fork Formation (Hibbard et 

al 2002; Mobely et al.  2014). The Persimmon Fork Formation is mainly composed of 

felsic volcanic rocks, originally rhyodacitic to andesitic in composition. The main 

minerals within this unit are quartz, albite, white mica, chlorite, and biotite; deposited in a 

subaerial environment (Snider et al 2014). The Richtex Formation components are beds 

of thin metamorphosed siltstones, mudstones, wackestones, and turbidite deposits. The 

main minerals within this unit are quartz, white pyrite (generally less than 10 percent), 

mica (up to 50 Percent), pyrrhotite, and chlorite, with lesser amounts of calcite and biotite 
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when strongly mineralized, the metasiltstone is highly silicified (Dennis and Wright 

1997; Hibbard et al., 2002; Mobely et al., 2014).  

The Richtex Formation and Emory Formation are equivalent in age. Regional 

mapping shows that the Asbill pond is separated from the underlying Richtex by an 

angular unconformity (Hibbard et al 2002). The Persimmon Fork appears to be 

conformable with the overlaying Richtex and Emory Fm., based on regional map and 

drill core observations (Mobley et al. 2014). The Richtex Formation occurs to the 

northwest, while the Asbill pond Formation to the southeast with a regional anticline of 

Persimmon Fork Formation separating them (Hibbard et al. 2002; Mobley et al 2014). 

The Richtex and Persimmon Fork formations are the main rock elements found in 

the study area. These formations are dissected by northwest diabase dikes, and intruded 

by Carboniferous granites. Coastal Plain sediments and Saprolite of variable thickness 

covered the units (Snider et al 2014). The Coastal Plain sands thin toward the west and 

have a thickness of 23 m in the Haile area. Thick saprolite, a structureless, 

unconsolidated, kaolin-rich, red-brown to white residuum has been derived from 

weathering of the underlying bedrock. The saprolitic cover of the Haile site is thick over 

the metavolcanic unit and thin over the metasedimentary unit, Figure 1.4 (Mobley et al. 

2014; Berry et al 2015). 

1.4 Mineralization 

The deposit at Haile consists of multiple discontinuous ore bodies. The gold 

mineralization is disseminated and associated with pyrite, pyrrhotite and molybdenite. 

The mineralization occurs in silica rich rocks. The ore bodies trend northeast-southwest 

with the trend of the Carolina Terrane. Within the mineralization zones, quartz is 
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dominant, pyrite is lesser (3 to 10 percent), and sericite is variable. Moving away from 

the mineralized zone, quartz and pyrite decrease while sericite increases in abundance 

(Snider et al 2014, Hulse et al. 2008). In North Carolina at Deep River Gold, based on the 

vertical drill holes at depth between 92 and 236 m from Carolina Gold crop., Ltd, the 

gold mineralization coincides with a zone of silicified rock, and dips shallowly to the 

southwest (Rapprecht 2010). The Richtex Formation is the main host rock for gold 

mineralization, where the gold deposits are located at or near the contact between felsic 

volcanics and sedimentary sequences.  

The Brewer mine is interpreted as a high sulfide epithermal porphyry while the 

Haile mine is interpreted as a low sulfide epithermal pyrite deposit, from subvolcanic 

intrusive to subaerial deposits, (Nora et al., 2012). Berry et al. (2016) indicated that the 

Haile mine shows a low sulfide signature with the potassium feldspar present, but the 

disseminated ore suggests a high sulfide deposit.  

The Re-Os age of mineralization at the Haile Mine is 548.7±2 Ma, close to the 

age of the host rocks at Haile and Ridgeway, 553±2 and 556±2 Ma, respectively (Mobely 

et al 2014). The Haile ore is interpreted as a low-sulfidization style, hydrothermal deposit 

driven by magmatism not by the later metamorphic events. Thus, the mineralization 

occurred while the Carolina terrane was still located in a peri-Gondwana site (Mobely et 

al 2014).  

1.5 Structure 

The Carolina terrane is bounded by late Paleozoic shear zones, the Modoc between 

the Carolina Slate Belt and Kiokee Belt, the Nutbush Creek, and the Gold Hill shear 

zones (Figure 1.3, Foley et al., 2012). 
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Thin Alleghanian age (311 Ma) alkaline dikes less than 2 m wide, some of them 

lamprophyric in composition, are observed rarely in the area (Mobley et al 2014). These 

ages are similar to the 314 ± 2 Ma age of the Dutchman Creek Gabbro that extends 500 

km from North Carolina to Georgia. The correspondence of the ages indicates that the 

lamprophyre dikes and the gabbro were produced during an episode of mafic magmatism 

that occurred in the Haile area during the early Alleghanian (Mobley et al. 2014, Berry et 

al. 2016).  The Carboniferous (300 Ma) Pageland and Liberty Hill granites intruded 

within a few miles of the mine area (Tuten 2013).  

Many folds in the Haile Mine area are asymmetric with moderately dipping 

northwestern limbs and steep to overturned southeastern limbs, (Mobley et al., 2014; 

Snider et al., 2014), and the foliation in the region strikes east-northeast. NW-trending 

diabase dikes of Jurassic age crosscut the Haile units. The diabase dikes vary from a few 

cm to 40 m in thickness. 

 

Figure 1.1: Gold mine locations in the Carolina Terrane from (Hibbard et al. 2002). 

(Mobley et al., 2014) 
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Figure 1.2: Map of the southeastern United States showing the Carolina and Appalachian 

terranes; modified after Vick et al. (1987). 

 

 

Figure 1.3: Geology of Carolina Terrane with the shear zones (Foley et al. 2012)
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Figure 1.4: A geologic map of Haile Mine area at 300ft above sea level. On the left side three geological cross sections (Mobley et al., 

2014) 
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CHAPTER 2 

DATA ACQUISITION 

2.1 Introduction  

The study area (Figure 2.1) is located in the northern part of South Carolina 

between Kershaw to the southwest and Jefferson to the northeast. The survey area 

consisted of a single block with an area of 131 km² (50.3 sq. miles) over flat low lying 

terrain in the 150-200m (500-650 ft) region. The survey block boundary co-ordinates are 

tabulated in table 2.1. The base of survey operations was in Camden, approximately 25 

km (15 miles) south of the survey area. 

2.2 Data source 

           The high resolution land gravity data, collected over the study area in 2010, was 

provided for this study by James Berry, Head Geologist, Haile Gold Mine, OceanaGold 

Inc. Gravity data has been merged with USGS gravity datasets by Tuten (2013). 

The high resolution helicopter EM and Magnetic survey was flown with a line 

spacing of 328 ft (100 meters) in the eastern section and 164 ft (50m) in the west. The 

control (tie) lines were flown perpendicular to the survey lines with a spacing of 3280 ft 

(1000m) and 1640 ft (500 m). The data was acquired by AeroTEM in 2010, figure 2.2. 

The nominal EM bird terrain clearance is 98.4 ft (30 meters), but can be higher in 

more rugged terrain due to safety considerations and the capabilities of the aircraft. A
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magnetometer sensor is mounted in a smaller bird connected to the tow rope 70.2 ft (21.4 

meters) above the EM bird and 49.9 ft (15.2) meters below the helicopter, Figure 2.3. A 

second magnetometer is installed on the tail of the EM bird. Nominal survey speed over 

relatively flat terrain is 46.6 miles/hr (75 km/hr) and is generally lower in rougher terrain. 

Scan rates for ancillary data acquisition is 0.1 second for the magnetometer and 

altimeter, and 0.2 second for the GPS determined position. The EM data is acquired as a 

data stream at a sampling rate of 36,000 samples per second and is processed to generate 

final data at 10 samples per second. The 10 samples per second translate to a geophysical 

reading about every 4.9 to 8.2 ft (1.5 to 2.5 meters) along the flight path. 

The geological map produced by OceanaGold (figure 2.4) was used to constrain the 

geologic interpretation.  

 

Table 2.1: Survey block Boundaries.  

  X Y       

537098 3827584   

539401 3823489   

546654 3826603   

548147 3824854   

553864 3828992   

555230 3827584   

558387 3829248   

553054 3837354   
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Figure 2.1: The study area location. 

 

Figure 2.2: The flight lines (EM and Magnetic) and the gravity observation point map. 

Red color is from the USGC and green color is high resolution gravity from OceanaGold. 

The coordinates are (34 ˚ 42’0”-34 ˚32’0”’N and 80 ˚ 36’0”-80 ˚ 22’0”W). 
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Figure 2.3: A) The magnetometer bird. B) The AeroTEM II EM bird, from the Aeroquest 

report for Haile Mine June 2010. 

 

 

Figure 2.4: Geological map from OceanaGold
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CHAPTER 3 

METHODOLOGY 

3.1 Gravity method: 

The gravity method is based on the measurement of variations in the gravitational 

field of the earth to provide a better understanding of subsurface geology. Gravity 

anomalies are often caused by deep-seated features, and the changes in the anomalies are 

related to lateral variations in density (Telford et al 1976). A bar graph (figure 3.1) has 

been prepared by J. Peters (Dobrin 1960) illustrating the average density of rocks 

obtained from laboratory measurements on core and surface samples. Generally, basic 

igneous and metamorphic have higher densities than sedimentary rocks (Dobrin 1960). 

Gravity prospecting is usually used as a secondary method in mineral exploration 

for detailed follow-up of magnetic and electromagnetic anomalies during integrated base-

metal surveys. Gravity and magnetic methods cover a large area with low cost compared 

to other methods, such as seismic surveys. The gravity density variations are small and 

uniform compared to changes in magnetic susceptibility, and the gravity anomalies are 

much smaller and smoother than magnetic anomalies (Telford et al 1976). 

The applications of gravity surveys to mineral deposit exploration includes rock 

types, structures, and occasionally, ore bodies themselves (Wright, 1981; Hoover et al. 

1995). Gravity data have proven a useful technique in the study of mineralized epithermal
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systems (Irvine and Smith 1990; Feebrey et al 1998; Morrel et al 2011). Morrel et al.  

(2011) observed a positive gravity anomaly over an epithermal mine in New Zealand. 

Also, in Iceland, Idaho and Japan, positive gravity anomalies were observed over 

mines by Hochstein and Hunt, 1970, Criss et al. 1985, and Izawa et al. 1990 (Morrel et 

al., 2011). Hinze (1960) showed that a positive gravity anomaly differential reflects the 

greater density of the iron ore minerals as compared to the minerals of country rocks, 

where the iron ore minerals have densities of 5.1 g/cc, while the country rock mostly 

range between 2.6 to 3.0 g/cc.  

Gravity applications are still widely used in the mining industry as an exploration 

tool to map subsurface geology and to estimate ore reserves for some massive sulfide ore 

deposits. Additionally, the gravity technique is sometimes applied to detect shallow faults 

and paleochannels in hydrologic investigation (Nabighian et al. 2005, 65ND).  

3.1.1 Basic theory: 

3.1.1.1 Newton’s law 

The theory behind gravitational is expressed by Newton’s law, which is based on 

the force of mutual attraction between two particles of masses m1 and m2 which is 

directly proportional to the product of the masses and inversely proportional to the square 

of the separation r between the centers of mass:  

F= γ
m₁m₂

r²
r₁ 
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Where F is the force on m₂, r₁ is a unit vector directed from m2
 toward m₁, r is the 

separation between m1and m₂ , and γ is the universal gravitational constant. (Telford et 

al 1990). 

3.1.1.2 Acceleration of gravity 

The acceleration g of a mass m2 due to the presence of a mass m1 can be found 

simply by dividing the force attraction F by the mass m2: 

g= 
γm₁

r²
r1 

The acceleration of g belongs to the gravitational force per unit mass due to m1. If 

m1 is the mass of the Earth, Mc, g becomes the acceleration of gravity and is given by  

g= (
γM˓

R²˓
⁄ )r₁ 

R˓ is the radius of the Earth and r₁ extending downward the center of the Earth. 

The acceleration value of gravity at the earth’s surface is about 980 cm/s2 

(980gals). The g unit is milligal (mGal), where 1Gal = 1cm/s2= 0.01 mGal. (Telford et al 

1990)  

3.1.2 Theoretical gravity: 

The surface of the earth is defined as an oblate ellipsoid. The average gravity 

value varies from 978031.85 mGal to 983217.72 mGal between the equator and the pole 

at sea level with the land above it removed. The formula can be written to describe the 

theoretical value of gravity, given by the International Association of Geodesy 1967 
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gt= 978031.85 ( 1+ 0.005278895 sin2∅ + 0.000023462 sin4 ∅) mGal; where ∅ is latitude 

of observe point (degree) (Telford et al 1990). 

3.2 Magnetic method: 

Magnetic prospecting is the oldest method of geophysical exploration, and it is 

used in searching for oil and minerals. In oil prospecting it is used to define the thickness 

of the sedimentary sequence, as it is less magnetic than metamorphic basement rocks, and 

it can be used to estimate the depth to basement. Now, virtually all magnetic prospecting 

for oil and minerals is carried out with aero-magnetic instruments (Dobrin 1960). 

The magnetic method has much in common with the gravitational method, but the 

magnetic field is much more complicated and variable. The magnetic field is bipolar, 

non-vertical in direction, with sharp local anomaly variations, while the gravity field is 

unipolar, vertical in direction, with smoother and regional anomalies (Telford et al 1976). 

The sources of local magnetic anomalies cannot be very deep, the magnetic depth 

is limited by the Curie isotherm of crustal rocks ≈ 550 C0, where rocks lose their 

magnetic properties. Therefore, the sources of local magnetic anomalies must be 

associated with features of the upper crust (Telford et al 1990).  

In sedimentary regions, especially where the basement depth exceeds 1.5 km, the 

magnetic contours are normally smooth and variations are small, reflecting the basement 

sources rather than near-surface features. Larger magnetic anomalies commonly reflect 

the susceptibility variations of basement rather than the basement relief (Telford et al 

1990). The regions where igneous and metamorphic rocks predominate usually show 
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complex magnetic variations. Deep features are frequently camouflaged by higher 

frequency magnetic effects originating nearer the surface (Telford et al 1990). 

The separation of contour lines often provide a useful criterion for structure, the 

closer the contours, the shallower the source. Any abrupt change in the contour spacing 

suggests a discontinuity at depth, possibly a fault. In mineral prospecting where ore zones 

are smaller and shallower, a flight-line spacing of 1.6 km or less is necessary to make 

sure that an anomaly between the flight-lines will not be lost (Dobrin 1960). 

The angle between the total field (F) and its horizontal component (H) is called 

inclination (I). The total magnetic field pointed vertically downward at the north 

magnetic pole is +900 inclination, and pointed vertically upward at the south magnetic 

pole is -900 inclination. The field pointed horizontally at the magnetic equator is 00 

inclination. The magnetic declination (D) of the total field is the angle between its 

horizontal component (H) and the geographic north (X) (Dobrin 1960; Lillie 1999). 

Magnetic susceptibility is the most significant property of rocks. A bar graph 

(figure 3.2) has been prepared by J. Peters (Dobrin 1960) illustrating the average 

magnetic susceptibilies of rocks from laboratory measurements on a large number of rock 

samples, igneous, metamorphic, and sedimentary. Generally, igneous and metamorphic 

rocks have higher susceptibilities than sedimentary rocks.  

In mineral prospecting it is not usually possible to detect minerals other than 

pyrrhotite, ilmenite, or magnetite (Dobrin 1960).  Alteration zones are commonly evident 

as ovoid or circular magnetic low. Usually, epithermal mineralization deposit are in 

weakly magnetic sedimentary units. In this case, magnetic survey may not be effective 
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due to the lack of magnetic contrast (Irvine and Smith 1990). Hydrothermal alteration can 

destroy magnetite, creating a broad, smooth magnetic low (Ford et al 2007). For example, 

alteration in the Waihi-Waitekauri region caused a destruction of magnetism (Morrell et 

al. 2011). 

3.3 The helicopter time domain electromagnetic method (HTEM): 

The electromagnetic survey is a very useful tool in mineral, groundwater and 

hydrocarbon exploration (Smith 2010). All electromagnetic methods are based upon the 

fact that the magnetic field varies in time - the primary field - and so, according to the 

Maxwell equations, induces an electrical current in the conducting surroundings. The 

associated magnetic and electrical fields are called the secondary fields. After the 

transmitter is turned off, the secondary field from the current in the ground is equivalent 

to the primary field (Sørensen et al. n.d). In other words, the transmitter loop generates 

the primary EM field, while the receiver coil receives the secondary field (rock body), 

(figure 3.3). The EM main method is inductive electrical conductivity,  which  is  a  

measure  of  how easily  electrical  current  can  pass  through  a  material (Lane 2002).  

In mineral prospecting, electromagnetic methods have been used quite 

successfully in the mining industry. Helicopter systems have been effective in near-

surface mapping, but depth penetration is limited in areas with conductive overburden. 

The HTEM systems are similar to ground electromagnetic systems (Allard 2007). 

Fixed-wing time domain systems use high moment transmitters and have no rigid 

geometry. These systems have much greater depth and less spatial resolution than a 

helicopter born frequency domain system. Since 1995, a number of attempts have been 
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made to adopt the advantage of the fixed-wing time domain to the helicopter. The 

AeroTEM system is based on a rigid geometry, where the receiver coil is placed in the 

middle of the transmitter loop. The transmitter is 40 m below the helicopter and 30 m 

above the terrain. The magnetometer is separately towed at 10 m above the EM system. 

The system also contains bucking coil, laser altimeters, and a global positioning system 

(GPS) (figure 3.4) (Balch et al. 2003). The bucking coil is used to reduce the primary 

field at the receiver (Allard 2007). Finally, the AeroTEM has the same advantages as 

airborne and helicopter EM systems of achieving much greater depth penetration and 

having excellent spatial penetration (Balch et al. 2003). The conductivity measurement 

shows that the igneous and metamorphic rocks have a low conductivity compared to the 

sulfides (> 10⁵ - conductor; < 10⁻⁸ - insulator; >10⁻⁸ < 10⁵ - semiconductor) (figure 3.5). 

The electromagnetic system used in the study area is an Aeroquest AeroTEM II 

time domain towed-bird system. The current AeroTEM II transmitter dipole moment is 

50 kNIA. The AeroTEM bird is towed 36.6 meters (120 ft.) below the helicopter.  The 

wave-form is triangular with a symmetric transmitter on-time pulse of 1.10 ms and a base 

frequency of 150 Hz. The current alternates polarity every on-time pulse. During every 

Tx on-off cycle (300 per second), 120 contiguous channels of raw X and Z component of 

the received waveform are measured. Each channel width is 27.78 microseconds starting 

at the beginning of the transmitter pulse. This 120 channel data is referred to as the raw 

streaming data. The AeroTEM system has one EM data recording streams, the newly 

designed AeroDAS system which records the full waveform, (figure 3.6) (Aeroquest, 

2010). 
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Overall, the electrical current flow is through moist or saturated pore space in soil 

or rock. So, the bulk conductivity of geologic units is much greater than the minerals they 

are composed of (Stewart 1981). Ore bodies are not the only cause for a high 

conductivity signal, graphite, faults, shears, bodies of water, and man-made features can 

also result in a high conductivity signal (Keary et al. 2002). Cultural noise “man-made 

features” such as power lines, pipelines, buried pipes etc. generate an electromagnetic 

field (Qian and Boerner, 1995). This cultural noise can be reduced by applying high 

spatial frequency or Butterworth filters (Al-Fouzan et al. 2004).  In general, resistivity is 

low with hydrothermal alteration, when sulfides are concentrated and connected at about 

5-percent volume or more, and with faulting. A high resistivity is associated with 

silicification or intrusive zones (Hoover et al 1992). 

 

Figure 3.1: Average densities of surface samples and cores based on laboratory 

measurements, prepared by J. Peters from Dobrin (1960). 
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Figure 3.2: Magnetic susceptibility of source samples and cores from laboratory 

measurements, prepared by J. Peters from Dobrin (1960). 

 

Figure 3.3: The principle of helicopter method, shows the primary (induced) field related 

to the transmitter and the secondary (measured) field related to geology, Anshütz (2014). 
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Figure 3.4: AeroTEM system (Balch et al. 2003). 

 

 

Figure 3.5: Rock conductivity parameters (Lane 2002). 

 



www.manaraa.com

 

24 
 

 

Figure 3.6: AeroTEM II instrument rack.
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CHAPTER 4 

INTERPRETATION METHODS 

The main goal of interpretation of potential field data is to map subsurface 

structures, e.g., faults and contacts. The interpretation in this study is constrained by 

geological mapping by OceanaGold. 

Much can be learned from potential field data through enhancement techniques 

filters. These filters can be applied in either space or Fourier domain.  The data is 

converted from spatial-domain to wave-number domain by using fast Fourier transform 

technique, then filters are applied. Next, the data is transformed back to space domain 

(Whitehead and Musselman 2011; Reeves 2005). 

The interpretation and analysis of potential field data was accomplished by 

applying the following techniques: Tilt derivative, Reduced to the pole, shaded relief, 

Power spectrum, Analytical signal, Source parameter image, Euler deconvolution, 

Upward continuation, and 2D modeling.  

Power Spectrum technique:  

Several authors, such as Spector and Grant (1970) and Bhattacharya (1965), 

explain the power spectrum method, based on using fast Fourier transform (FFT) to 

analyze the potential field data. The FFT transformed the grid from space domain into 

wavenumber domain. Then, it is multiplied by the wavenumber response of the
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appropriate digital filter. Finally, the transform result of the Fourier coefficients is 

inverted back into space domain, (figure 4.1) (Hildenbrand 1983; Reeves 2005). 

Spectral analysis of the potential anomaly field indicates an ensemble average 

depth to the different sources of anomalies (Rama Rao et al. 2011; Whitenhead and 

Musselman 2011; Reeves 2005). Two dimension analysis of the power spectrum of field 

data is a helpful tool to estimate the average depths of different magnetic horizons with 

distinct changes in magnetic properties (Spector and Grant, 1970; Reddi et al., 1988). 

In general, the curves of the power spectrum consist of two parts of linear 

segments. The first part, which relates to deeper sources, is in the low frequency end 

where the rate of power decay is linear and can be approximated by straight line. The 

second part is in the high frequency end and relates to shallower sources (Spector and 

Grant 1970; Reeves 2005). 

This methodology is advantageous because it is statistically oriented, averaging 

source depths over a region containing complex anomalies. Also, as it is based entirely on 

the analysis of the wavelengths of anomalies, it is less affected by interference due to 

overlapping anomalies and high-frequency noise than other methods (Hinze et al. 2013/p-

368).  This method has been used to map the depth of the Curie point isotherm (about 580 

0C) where the rocks lose their ferromagnetic properties (Hinze et al. 2013/p-371). 

Spector and Grant (1970) indicate that the relationship between the power 

logarithm and wavenumbers is used to estimate the depth of the source body. The 

logarithm of this factor is a linear slope approximately twice the depth of the linear 

segment.  
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Low-pass filters, the deep-crustal or sub crustal sources in the regional field, pass 

the long-wavelength anomalies (broad slow changes in the potential-field data), where 

the high-pass filters pass the short-wavelength anomalies (residual) that usually belong to 

shallow features. Thus, wavelength filters are used to isolate the deep seated anomalies 

from the shallower anomalies. This isolation is based on the assumption that the cutoff 

wavelength of this filter is related to the maximum depth of the source (Dobrin and Savit, 

1988; Whitenhead and Musselman 2011; 2Geosoft). 

To separate the regional and residual components of the potential fields, the 

Butterworth filter tool was used. The Butterworth filter is excellent for applying 

straightforward high-pass and low-pass filters to potential data as it can easily controls 

the degree of filter roll-off (degree of the sharpness of the cutoff wavenumbers) while 

leaving the central wavenumber fixed (Whitenhead and Musselman 2011). The 

Butterworth enable rejection of the desired central range while keeping the low and high 

“extremes” of frequency continuum (Whitenhead and Musselman 2011; 2Geosoft). 

Tilt Derivative (TDR): 

Tilt derivative is another method used to enhance the shallow geological sources 

and to estimate the depth. Tilt derivative or tilt angle, or local phase, was first described 

by Miller and Singh (1994) and refined by Verduzco et al. (2004) and has been developed 

by Salem et al (2007; 2008). TDR is a normalized derivative based on the ration of the 

vertical and horizontal derivatives of the field (Salem et al 2007). The method is not 

based on the moving window study approach as in the Euler deconvolution method (Hinz 

et al. 2013-p385). The TDR method assumes the source structures have buried 2D 

vertical contacts (Salem et al 2007; 2008).  
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The tilt derivative (Miller and Singh 1994; Verduzco et al. 2004) is defined as: 

TDR= tan-1  (
𝑉𝐷𝑅

𝑇𝐻𝐷𝑅
) 

Where VDR and THDR are first vertical and total horizontal derivatives, 

respectively, of the total magnetic intensity T.  

TDR= tan-1  (
𝑑𝑇

𝑑𝑧⁄

√(
𝑑𝑇

𝑑𝑥
)²+(

𝑑𝑇

𝑑𝑦
)²

)  

Where T is the 1st derivative of the field, while dT/dz, dT/dx, and dT/dy are 1st 

derivative of the field in directions of x, y and z, respectively (Salem et al 2007, 2008). 

The tilt depth technique (Salem et al. 2007) uses the reduced magnetic field and 

supposes buried 2D vertical contacts, defined as 

Tilt = tan-1 (ℎ
𝑧
) 

Where h is horizontal distance (over contact) and z is the depth to the top of the 

contact. This equation indicates that when the value of the tile angle is 00 (h=0) this is the 

location of contact and equal to 450 when h=z and -450 when h=-z. 

The tilt derivative range is between ±90o regardless or - π/2 and π/2 (radian) of the 

amplitude of the vertical derivative or the absolute value of the total horizontal gradient 

(Salem et al. 2007; 2008).  

 The zero contour of the tilt derivative map can be used to delineate the edges of 

source bodies, and its negative values are outside the source (Miller and Singh 1994). 

Furthermore, the horizontal distance from 45 o to 0 o position of tilt derivative is equal to 
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the depth to the top of the contact, half the physical distance between ±45 o contours 

(Salem et al. 2007; 2008).  

Salem et al. (2008) indicated that tilt derivative can be used on a magnetic grid to 

estimate the depth and location of anomaly sources without prior knowledge of the 

geometry of the sources. The result contains no information on either the geomagnetic 

field strength or the susceptibility of source bodies, so by implication contains no 

information on the subsurface magnetization.  Nevertheless, the method contains 

information on the depth of the source of the anomaly (Salem et al. 2010).  

Salem et al. (2007) presented magnetic modeling that relates to a simple magnetic 

body with vertical contact and magnetization (magnetic inclination of 90). The TDR 

response is +90 above the source body and -90 away from these source body. To remove 

the inclination dependency, the tilt derivative is applied to the reduction of the total 

magnetic intensity map. 

This method has some advantages: 1) it is dependent on the first order derivatives, 

and thus is less subject to noise than other methods requiring higher-order derivatives; 2) 

it can be used on a magnetic grid to estimate the depth and location of anomaly sources 

without prior knowledge of the geometry of the sources; and 3) unlike the Euler method, 

there is no need to choose and move window size, nor is there a problem of solution 

clusters to contend with (Salem et al. 2007). 

3-D Analytical signal method: 

Analytic signal is a linear equation derived to provide the source location 

parameters of a 2D magnetic body without a priori information about the nature of the 
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source, Salem (2005). This technique is used to estimate the depth and locate the edges of 

an anomaly’s source and approximate its geometry (Salem and Ravat, 2003). Analytic-

signal was first used by Nabighian (1972) and Blakely (1995).  

This method assumes that causative sources are 2D geological structures, such as 

contacts, dikes and horizontal cylinders (MacLeod et al. 1993; Salem 2003). It depends 

on the 1st order derivatives of the horizontal and vertical of magnetic field, and the 

source direction causing the anomalies. It shows maxima over magnetization contacts 

(Roset et al. 1992) and a maximum value over the edge of the fault/contact. 

Roset et al. (1992) indicated that the absolute amplitude value of the 3-D analytic 

signal is easily derived by calculating the three derivatives of magnetic anomalies at 

locations (x,y) using the expression  

 

The analytic signal (AS) is the square root of the sum of the squares of the 

derivatives in the x, y and z directions. Where ǝf/ǝx, ǝf/ǝy and ǝf/ǝz are the first vertical 

and horizontal derivatives of the observed magnetic field. MacLeod et al. (1993) 

mentioned that the use of a 3-D perspective presentation is to exhibit how the anomaly of 

the AS peaks over the edges of the source. 

The analytic signal can be used for delineating geological boundaries, as analytic 

signal relies upon the strength and not the direction of the source’s magnetism (Dentith 

and Mudge 2014). The amplitude of the analytical signal and its derivatives are 
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calculated in the frequency domain using the fast Fourier transform technique (Blakely 

1995; Salem 2004). An advantage of this method is that the magnetization direction does 

not need to be known, because anomalies will be shifted properly over the top of the 

source bodies (Hsu et al. 1998). Finally, the application of analytic signal does not have 

to be limited to magnetic anomalies; it can also be applied to gravity, Roest et al. (1992). 

3-D Euler deconvolution (ED) technique: 

The Euler deconvolution is a common technique used in the interpretation of 

magnetic and gravity data and to produce a map shows the depths and locations of the 

geologic sources of the magnetic or gravity anomalies observed in a 2D grid. It’s an 

inversion method used to estimate the depth and outline the boundaries of the source 

bodies. For mineral exploration, the depth estimates are used to define the location and 

depth of source that cause a magnetic or gravity anomaly (Whitehead 2010). 

The method was developed by Thomson (1982) to interpret 2D pole reduced 

magnetic profile and extended by Reid et al. (1990) to be applied to gridded data. An 

advantage of the Euler deconvolution method is that it is independent of field direction, 

dip, or strike of the anomaly feature, so the reduction to pole is unnecessary, as the source 

positions can be accurately reproduced. Also, this technique assumes no particular 

geological model.  

The 3D Euler deconvolution is based on the Euler’s homogeneity equation, an 

equation that relates the potential field (magnetic or gravity) and its gradient components 

to the location of the source, with the degree of homogeneity N, which may be 

interpreted as a structural index. The structural index (SI) is a measure of the rate of 
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change with distance of a field. For example, the magnetic field of a narrow 2-D dyke has 

a structural index of N=1, while a cylinder or vertical pipe gives N=2.  The step and 

contact have a structural index of N=0 in magnetic. In a gravity field, a pipe has a 

structural index of 1, while a sphere has a structural index of 2. The three gradients 

(vertical and two horizontal gradients) of the potential field are normally calculated using 

the Fast Fourier transform (FFT) (Thompson, 1982; Whitehead 2010). 

The depth estimation resulting in Euler deconvolution relies mainly on structure 

index (SI) choice. The SI parameter value relies on the source body type and the potential 

field, table 4.1 summarizes the structural indices for simple models for magnetic and 

gravity field (Whitehead 2010).  Reid et al. (1990) indicated a structural index value of 0 

for gravity data to detect faults, table 4.2 summarize the structural index for gravity of 

simple mass model. The Euler solutions are located outside of the study area, due to 

instability of the moving window of Euler solution. Can be taken into account in the 

interpretation as fare as these solutions show good clustering (Saibi et al. 2006).  

The depth tolerance determines which solutions are accepted (i.e. accepts 

solutions with error estimate smaller than the specified tolerance). The default is 15 

percent — typically a good starting value for a first pass at analyzing the data. A smaller 

tolerance will result in fewer but more reliable solutions. The Window size determines 

the area (in grid cells) used to calculate the Euler solutions. All points in the window are 

used to solve Euler's equation for a source position (Whitehead 2010). 

The Euler deconvolution in 3D is given by Reid et al. (1990) 

(x-x0) ǝT/ǝx + (y-y0) ǝT/ǝy + (z-z0) ǝT/ǝz = N (B-T) 
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Where (x0, y0, z0) is the position of a magnetic source whose total field T 

observed at (x, y, z). The total field has a regional value of B (background value). N is the 

structural index (SI). The gradients ǝT/ǝx, ǝT/ǝy and ǝT/ǝz are the first derivatives in the 

direction of x, y and z. 

The ED’s system uses a least squares method to solve Euler's equation 

simultaneously for each grid position within a sub-grid (window). It is inverted the 

Euler’s homogeneity equation over a window at every grid data, (Whitehead 2010).  

Table 4.1: Structural indices parameter values after Whitehead (2010). 

 

 

 

 

 

  

Table 4.2: Structural indices N for the gravity anomaly (GA), first derivative (FD), and 

second derivative (SD) gravity anomalies of some mass models, after Hinze et al (2013) 

 

SI Magnetic field Gravity field 

0.0 contact sill/dyke/step 

0.5 thick step ribbon 

1.0 sill/dyke pipe 

2.0 pipe sphere 

3.0 sphere 
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Two-dimensional gravity modeling:        

Two-dimensional (2D) models consider the earth in two dimensions, i.e. it 

changes with depth (the Z direction) and in the direction of the profile (X direction; 

perpendicular to strike). 2D models do not change in the strike direction (Y direction). 2D 

blocks and surfaces are presumed to extend to infinity in the strike direction.  GM-SYS 

allows profiles that dip to the strike of the model. The profile angle calculated from the 

strike direction is entered as relative strike. For profiles perpendicular to the strike, the 

relative strike is 900 (Geosoft GM-SYS, nd).   

The 2-D modeling program provides a geological evaluation reasonableness 

model based on any geological and geophysical previous data on the study area. The two 

dimensional gravity modeling program is a technique that is based on fitting the gravity 

parameters with the observed data from potential field. 

Reduced to pole (RTP): 

The Reduction of total magnetic field intensity to the pole process was illustrated 

by Baranov (1957). The total magnetic intensity field was reduced to pole by using the 

Gx’s technique (Phillips, J.D., 2007). The RTP was calculated using the inclination and 

declination values of 63o and -7.20o, respectively. This filter is applied in the Fourier 

domain and it migrates the observed field from observation inclination and declination, to 

what the field would look like at the magnetic pole. This aids in the interpretation since 

any asymmetry in the reduced to pole field can then be attributed to source geometry 

and/or magnetic properties (3Geosoft technical notes). The anomalies result in the RTP 

magnetic map result will be directly located above the source, figure 4.2. 
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The magnetic anomaly shape relies not only on the susceptibility and shape of the 

perturbing body, but also on the direction of its magnetization and direction of the 

regional field. The RTP (Reduction of total magnetic field intensity to the pole) technique 

transforms an anomaly into the anomaly that would be detected if the magnetization and 

regional field were vertical. Thus, RTP removes the asymmetries caused by a nonvertical 

magnetization or regional field and produces a simple set of anomalies to interpret 

(Dobrin and Savit 1988).  However, for an accurate interpretation of the magnetic data, it 

has been suggested to reduce the total field to magnetic pole in order to remove the effect 

of magnetic latitude on the anomalies (Bhattacharyya 1965). 

Grant and Doddo (1972) stated that the reduction to magnetic pole filter requires 

the azimuthal orientation of the sensor θ in order to perform the reduction to the pole. 

This tool assumes that lines are relatively rectilinear, and calculates the orientation of 

each line using the first and last point of the line. RTP can be calculated in the 

wavenumber domain using the following equation, 

L (θ) = 
I

(sin 𝐼𝑎+𝑖𝑐𝑜𝑠.cos (𝐷− θ))² 
 

Where θ is the wavenumber direction, I is the magnetic inclination, D is the 

magnetic declination and Ia is the inclination for amplitude correction. Ia is set to an 

inclination greater than the true inclination of the magnetic field or less than the true 

inclination in the Southern hemisphere (Macleod et al 1993). 

Shaded-relief: 

Shaded relief is “calculating the first horizontal derivative in the direction of a 

supposed illumination” Reeves (2005).The shaded relief technique is commonly used to 
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enhance the image. This image is useful in the analysis of magnetic anomaly maps, since 

the large gradients typical of magnetic anomalies are hard to interpret in contour maps. 

Also, this method is useful in identifying lithologic-geology (Hinz et al. 2013; p 317-

318). Short-wavelength anomalies associated with local sources are enhanced, similar to 

the vertical derivative method (Hildenbrand and Kuchs 1988).  

The shaded relief map presents magnetic anomalies as topography. It is used to 

enhance and highlight most linear trends perpendicular to the illumination direction.  The 

surface reflection in shaded relief depends in the orientations of the topography related to 

the position of the sun. (Dentith and Mudge 2014) 

Source Parameter Imaging (SPI): 

The source parameter imaging technique is a fast and easy method for calculating 

the depth of source bodies. Its accuracy has been shown to be +/- 20% in tests on real 

data sets with drillhole control. Its accuracy is similar to the Euler deconvolution method; 

however, source parameter image produces a complete set of clear solution points and is 

easier to use. Thurston and Smith (1997) indicated that the goal of the source parameter 

image method is that the image result can be interpreted easily by someone who is not 

familiar with magnetic interpretation, but is an expert in the local geology. Source 

parameter image called “local wavelength” is a method based on the extension of the 

complex analytical signal. The local wavenumber for the magnetic field given by 

Nabighian (1972) as  

K= 
1 

|𝐴|2 
(

𝜕²𝑇

𝜕𝑥𝜕𝑧

𝜕𝑇

𝜕𝑥
−

𝜕²𝑇

𝜕𝑥²

𝜕𝑇

𝜕𝑧
)  

Where T is the total magnetic field, x and z are the horizontal and vertical 
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direction, and |𝐴| is the analytic signal amplitude.  

Where 

 |𝐴| = √(
𝜕𝑇

𝜕𝑥
) ² + (

𝜕𝑇

𝜕𝑧
) ² 

The SPI techniques assumes either a 2-D sloping contact or a 2-D dipping thin-

sheet model. The grid solutions show the source depths and edge location. The depth 

estimate results are independent of the magnetic inclination, declination, dip, strike and 

any remanent magnetization (Thurston and Smith 1997). 

The depth estimated directly over the source edge at location x=0  

Depth = 1/Kmax 

where Kmax is the maximum value of the local wavenumber K over the step source 

(SPI.GX geosoft). 

So, the SPI first calculates analytic signal and local phase and then finds the peak 

values by using the Blakely and Simpson (1986) method. The Blakely method is 

calculated each grid intersections and compared with its eight surrounding grid cells in 

four directions (x-direction, y-direction, and both diagonals) to see if a peak is present. 

These peak values are used to calculate depth solution that saved to a database (SPI.GX 

geosoft; Blakely and Simpson 1986). 

An advantage of this method is that the interference of anomalies is low, since the 

second-order derivatives are generated by this method to create the image. The SPI 

estimate source parameters from gridded data and this has two advantages. First, it 

eliminates errors caused by survey lines that are not oriented perpendicular to strike. 
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Second, there is no dependence on window selection or size operation, as other methods 

require. In practice, the technique is used on gridded data by estimating the strike 

direction at each grid point (Thurston and Smith 1997). The vertical derivative grid is 

calculated in the frequency domain, and the horizontal derivatives are calculated in the 

space-domain, using Geosoft (version 8). 

Compared to the analytical signal, the local wavelength gives a better resolution 

and has maximums that are inversely proportional to depth. The peaks of the local 

wavelength and analytic-signal can be used either to map the edge or contact of the 

source body. Nevertheless, the local wavelength presents more features and better 

resolution (Thurston and Smith 1997).  

The local wavenumber, like the analytic signal, is independent of source 

magnetization and dip effects; however, parameter positions such as depth and horizontal 

location can be determined directly from the magnetic field (Pilkington and Keating 

2006). 

The inversion of the local wavelength corresponds to the contact depth, where the 

warm color indicates a high wavelength and cold color indicates the low wavelength. The 

color bar shows the inverse of the local wavelength, it has units of meter. 

Upward continuation filter: 

The observation of an airplane can be “recalculated” on a different plane view. 

Upward continuation is a “clean” filter as it has no side effects. It is changed the 

measurement surface of potential field to another surface. Used to reduce the effects of 

shallow features and noise in grids (Whitenhead and Musselman 2011). 



www.manaraa.com

 

39 
 

The wavenumber filter that creates upward continuation is defined as  

F(w)= e-hw 

Where h is distance in ground units, relative to the observation of the plane  

w is wavenumber (radians/ground_unite) 

 

Figure 4.1: A three stage process using multiplication in the wavenumber domain can be 

more efficient than convolution in the space domain, (Reeves 2005). 

 

 

Figure 4.2: Magnetic anomaly of total field before and after the reduction to pole 

transformation that makes anomaly directly located above the source, after (Ravat 2007).
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CHAPTER 5 

RESULTS 

5.1 Gravity Data Results 

The Bouguer gravity values (figure 5.1) increase gradually from 2.1 mGal in the 

north to over 16 mGal in the western part of the study area. The changes in gravity 

anomalies are related to density differences of the rocks. The Bouguer map shows low 

gravity anomalies (blue color) to the north over the Pageland granite. High gravity 

anomalies (pink color) to the west may be related metavolcanics and/or dikes. The low 

gravity anomalies over the Haile Mine area are related to the increase in the thickness of 

the metasedimentary section. The medium gravity values (green and yellow color) in the 

central part of the study area are possibly related to the coastal plain sedimentary 

sequence, showing N and NW trends.  

 

Figure 5.1: Bouguer gravity map
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Power spectrum technique: 

The fast Fourier transform is applied on the Bouguer gravity grid to calculate the 

2-dimensional power spectrum by using Oasis Montaj (Geosoft version 8.5). The power 

spectrum (figure 5.2) illustrate two linear segments relevant to regional and residual 

components of the gravity field.  

The 2-dimensional power spectrum (figure 5.2) shows deep-seated sources (low 

frequency end), with wavenumbers < 0.38, and the average depth between 1.5 and 2 km. 

The high frequency end represents the residual components of Bouguer gravity (figure 

5.2), with average depths between 0.5 and 0.1 km.  

The Butterworth filtering tool was applied in the wavenumber domain through 

Oasis Montaj version 8.5. The Butterworth filter tool is carried out on the Bouguer 

gravity grid; in terms of the filter parameters, the degree of filter function is 8 (default), 

and the central wavelength cutoff value is 0.28 (cycle/ground).  

Regional and residual maps of the Bouguer gravity data are shown in figure 5.3 

and 5.4, respectively. The low gravity zone on the northern part of the map, with an 

amplitude that ranges between 2 and 6 mGal oriented in NE-SW direction, is associated 

with the Pageland granite. The second zone on the western part of the map is 

characterized by high gravity, with an amplitude that ranges between 15 and 19 mGal, 

and is oriented in a NW-SE direction. This zone may be associated with mafic intrusions 

and/or metavolcanic formations. The third zone is at Haile Mine area, has a medium 

gravity value that ranges between 13.5 and 15 mGal, and trends NE-SW. This zone is 

associated with the increase of the thickness of the metasedimentary section.  
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The residual map (figure 5.4) shows that amplitude values range between - 0.20 

and 0.25 mGal. It is characterized by several minor circular and elongated anomalies 

along the study area. The structural trends are in NW-SE, NE-SW and N-S directions. 

The western part of the study area at Haile Mine site shows a high amplitude anomalies 

of 0.15 mGal oriented in NE-SE and N-S trends. Figure 5.5 shows the B-B’ geological 

profile and its location on the residual gravity map. 

 

Figure 5.2: The 2-dimensional power spectrum of the Bouguer gravity map.  
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Figure 5.3: The regional Bouguer gravity map. 

 

Figure 5.4: The residual Bouguer gravity map. 

Regional Bouguer  (mGal) 

Residual Bouguer  (mGal) 
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Figure 5.5: The B-B’ geological profile and its location on the geological map from 

Mobley et al. 2014. Expanded view of the residual Bouguer map showing the location of 

the B-B’ geological profile.   

 

3-D Analytical signal (AS) method: 

The analytic signal was applied to the Bouguer gravity to provide the source 

locations of the gravity anomalies, locate the sources edges in both horizontal and vertical 

dimensions, and determine the main trends of these anomalies. It shows maxima over 

contacts (Roset et al. 1992), and a maximum value over the edges of the fault/contact.  

Figure 5.6 shows a high analytic signal (pink color) located in the west, north, and 

north-east part of the study area, related to metavolcanics and the Pageland granite (felsic 

intrusive), respectively. The high values of AS in the west and north part (dotted line) 

may indicate the contact between metasedimentary and metavolcanic formations. The 

analytic signal of the Bouguer map over the Haile mine in the western part of study area 

N N 

N 
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(small box in the western side of figure 5.6), shows maximum anomalies over the 

metavolcanic units and also highlights some of the ore bodies in the Haile Mine area.  

Figure 5.7 shows an expanded view to the small box in figure 5.6, where the Haile 

mine area is located. It shows a geological map overlying the AS of the Bouguer map. 

High AS anomalies correspond to the areas of ore bodies and metavolcanic units. The 

metasedimentary rocks show a low AS anomaly. 

The positions and trends of some peak analytic signals (red color) at the Haile and 

the Brewer Mine areas are similar to TDR of the Bouguer and residual maps. 

 

Figure 5.6: The analytic signal of the Bouguer gravity map. Dotted line may refer to the 

lithological boundaries of the metasedimentary and metavolcanic units. 

Analytic signal of Bouguer 
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Figure 5.7: An expanded view to the Haile Mine area. The geological map overlies the 

AS of the Bouguer gravity map. The boundary of the AS map is located in the western 

part of figure 5.6. 

 

Tilt Derivative method (TDR):  

           The tilt derivative was applied to Bouguer gravity and its regional and residual 

maps to enhance the subsurface structure and determine the depths and locations of the 

vertical contacts and faults of the sources bodies without prior knowledge about the 

source by using the first horizontal and vertical derivatives. The TDR represent both the 

shallow and deep sources. 

            The TDR map results helps predict the horizontal location and extent edge of 

anomaly sources by assuming a vertical contact model. The tilt derivative maps show the 

range of the amplitudes is from -1.57 to 1.57 radial. So, the zero contour line is located 

over or near the contact source, where the vertical derivative is zero and the horizontal 
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derivative is maximum and is negative outside the anomaly source region, while the TDR 

is positive when it passes over the edges of the source. 

The TDR map of Bouguer (figure 5.8) shows the boundary of the 

metasedimentary formation in the west part over the Haile main area. The zero contour 

line in the north part of the study area outlines the edge of the felsic intrusion, similar to 

the edge location that results from the shaded relief of the RTP magnetic map. 

The TDR of the regional Bouguer gravity map (figure 5.9) indicates the possible 

regional boundary of the metasedimentary units in the Haile Mine area. The felsic 

intrusive edge is clearly seen. The zero contours produce an elongated zone in NW and 

NE direction, in the west, center, and east part of the study area. The metavoclanic unit 

and mafic dikes are characterized by positive tilt derivatives; the lithological boundary of 

the metavolcanic rocks has been superimposed over the tilt derivative of the regional 

Bouguer map (figure 5.10). 

The TDR of residual Bouguer map (figure 5.11) shows that the main structural 

trends of these anomalies are NE-SW and NW-SE. Some of these lineament edges (figure 

5.11) are following faults. South of the Haile Mine area the contact of the 

metasedimentary formation is shown clearly by positive tilt derivative as a NE trend. 

Figure 5.12 shows an expanded view of the Haile Mine area. The ore is characterized by 

a positive tilt derivative and has a NE trend. 
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Figure 5.8: The tilt derivative of the Bouguer map. Solid line indicates the zero radial 

contour. The polygon is the boundary of the study area.  

 

Figure 5.9: The TDR of the regional Bouguer map. Dotted lines are the zero contours. 

The thick line is the felsic intrusion from OceanaGold’s geological map. 

The tilt derivative of the Bouguer map (Radi) 

TDR of the regional Bouguer map  (Radial) 
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Figure 5.10: The TDR of the regional Bouguer map. The geological map from 

OceanaGold overlies the TDR of regional Bouguer map. The orange color of the 

geological map indicates the lithologic boundary of the metavolcanic formation. The NW 

lines are mafic dikes. The white lines are possible faults. 

 

Figure 5.11: The TDR of the residual gravity map. Some of these lineament edges are 

following the faults. The solid lines are possible faults from geological map.  

TDR of the regional Bouguer map 

 

TDR of the residual Bouguer map 
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Figure 5.12:  Expanded view of the Haile Mine area. White line is the B-B’ profile. Pink 

polygon is the ore body from OceanaGold’s geological map. 

 

Source Parameter Image method (SPI): 

The source parameter image is applied on the Bouguer gravity map by using 

Geosoft software to estimate the depth of gravity sources and locate the source contact. 

The inversion of the local wavelength corresponds to the contact depth, where the warm 

color indicates a high wavelength and cold color indicates the low wavelength. The color 

bar show the inverse of the local wavelength, it has units of meter. 

Based on the SPI statistic report figure B.1, the depth of gravity sources range 

from 101 to 28965 m. Figure 5.13 shows the solution grid of SPI. It shows the edge 

locations and depths of anomaly sources. The blue color shows that area of the shallow 

gravity sources and the red color shows the area of deep gravity sources. The source 

depths over the Haile Mine area are shallow.  

The SPI solutions indicate the contact locations, depths, and structural trends. The 

SPI solutions are shown in figure 5.14 and 5.15. As indicated from the SPI method figure 

5.14 and 5.15, the yellow contacts are present at depths less than 500 m, where the red 
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are present at depths between 500 to 1500 m, while the green square are present at depths 

between 1500 to 2000m. Finally, the purple and blue circle are present at depths between 

2000 to 2500 m and above 2500 m, respectively.   

Figure 5.15 shows the structural trends of the SPI solutions. Line A-A’ is the 

same trend as seen in the residual Bouguer, analytic signal of residual Bouguer, and tilt 

derivative of the TMI and its regional map. Line B-B’ has the same trend as observed in 

the residual Bouguer and the analytic signal of the residual Bouguer gravity map. Line B-

B’’ shows a half circle feature, similar to a feature as the SPI of the magnetic field, an 

oval pattern around the Brewer Mine area that may related to the Richtex/Persimmon 

Fork contact. 

 

Figure 5.13: Source parameter image of Bouguer gravity (depth estimate grid). 

 

SPI of Bouguer 
Dep (m) 
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Figure 5.14: SPI solutions plotted on the SPI of the Bouguer map.  

 

Figure 5.15: SPI solutions of Bouguer gravity map.  
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A 
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SPI of Bouguer (m) 
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3-D Euler deconvolution (ED): 

The Euler deconvolution (ED) method was applied to the 2nd vertical derivative 

of the Bouguer gravity field (figure 5.16).  Note the numerous shallow solutions in the 

Haile Mine area, the southwest part of the study area. NNE trend B – B’ is a possible 

fault and/or contact. This trend is similar to one observed in the gravity residual and ED, 

and magnetic TDR. ENE trend A – A’ can also be seen in the residual, SPI and AS of the 

Bouguer map.  
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Figure 5.16: The Euler deconvolution solutions of 2nd vertical derivative of the Bouguer 

map. The structural index is 1 which represents contacts. The Euler solution depths 

plotted on the residual Bouguer map (above) and without the gravity map (below). The 

window size is 5. The Euler deconvolution solutions follow the dikes. A NNE trend (B-

B’) is a possible fault and/or contact. A NW trend (C-C’) is follow the Jurassic dikes 

trend. An ENE trend (A-A’). 

 

2-D gravity modeling:        

The two dimensional forward gravity model was generated by using Oasis Montaj 

and 2-D GM-SYS software along the B-B’ geological section from (Mobley et al. 2014). 

The gravity model is defined by the correlation of rock density value from diverse 

sources “Berry (2013), Donald et al. (2008), and Snider et al. (2014)”. Along the profile, 

the horizontal axis represents the distance in meters. The vertical axis displays the gravity 

field in mGal and the lower section displays the depth in meters.  

B 

B’ 

C 

C’ 

A 

A’ 
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In the study area, the initial density values (table 5.1) are used for 

metasedimentary, metavolcanic, coastal plain, saprolite, dikes, and ore. The Bouguer 

reduction density is 2.69 gm/cc. The final model result (figure5.17) shows a good fit 

between calculated gravity (solid line) and the observed (dotted). 

To model one of the ore bodies that is located on the right side of figure 5.17, the 

ore density values were assumed to vary from 2.75, 2.80, and 2.85 gm/cc, and the 

metasedimentary densities value range from 2.72 to 2.75 gm/cc. The average density 

value of the pyrite, molybdenite, and gold were derived from (Carmichael 1989) and 

(Telford1990) (table 5.2). The average density of pyrite and molybdenite is 5.0 gm/cc and 

gold is 18.0 gm/cc. 

Figure 5.18 shows the same density values as figure 5.17, the Richtex density 

value is 2.72 gm/cc and the ore body density is 2.80 gm/cc. The calculated (solid line) fits 

the observed gravity (dotted).  

1) If we assume that the ore density is due to pyrite and molybdinite (5 gm/cc);  

2.72 X + (1-X) (5.0) = 2.8 

X = 0.96 

Then ore body is 4% pyrite and molybdenite and 96% Richtex. 

If we assume that the anomaly is mainly due to the presence of gold (18 gm/cc), 

2.72 X + (1-X) (18.0) = 2.8 

X= 0.99 

Then the ore body is 1 % gold. 
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2) By increasing the Richtex density (figure 5.19) from 2.72 (dashed line) to 2.75 

gm/cc (solid line), the density model does not fit the observed gravity (dotted line). 

3) By changing the density of the ore body (figure 5.20) from 2.80 (dashed line) 

to 2.75 gm/cc (solid line) and keeping the Richtex density 2.72gm/cc, the density model 

does not fit the observed gravity (dotted) as well. 

 If ore density is 2.75 gm/cc and Richtex = 2.72 gm/cc,  

2.72 X + (1-X) (5.0) = 2.75 

X = 0.99 

Then 1% is pyrite and molybdenite. 

If we assume that the anomaly is mainly due to the presence of gold (18 gm/cc), 

2.72 X + (1-X) (18.0) = 2.75 

X = 0.998 

Then the ore body is 0.2% gold. 

5) By changing ore body density (figure 5.21) to 2.85 gm/cc (solid) and keeping 

the Richtex density of 2.72 gm/cc, the density model does not fit observed gravity as 

well. 

Table 5.1: The initial densities value. 

Unites Density value 

Richtex (MS) 2.72  gm/cc 

Persimmon Fork (MV) 2.73  gm/cc 

Coastal Plain 2.63  gm/cc 

Saprolite 2.12  gm/cc 

Dikes 2.86 – 3.0  gm/cc 

Ore bodies 2.79 – 2.8  gm/cc 
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Table 5.2: Mineral densities value.  

Minerals Densities References 

Pyrite 5.1 g/cc            4.95.2g/cc (Carmichael 1989) ; (Telford1990) 

Gold 19.3 g/cc        15.6-19.4g/cc (Carmichael 1989) ; (Telford1990) 

Molybdenite 4.999g/cc       4.4-4.8g/cc (Carmichael 1989) ; (Telford1990) 

 

 

Figure 5.17: 2-D density model. North is on the left side of the profile. 

 

Figure 5.18: The 2-D density model zooms in to one of the ore bodies that is located on 

the right side of figure 5.17. MV metavolcanic (light orange); MS metasedimentary (light 

orange); CP coastal plain (yellow); SP saprolite (white); dike (red); ore (orange). 

North 
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Figure 5.19: The Richtex = 2.75 gm/cc (solid), Richtex = 2.72 gm/cc (dashed), and Ore = 

2.8 gm/cc. Calculated anomalies do not fit the observed gravity (dotted line). 

 

Figure 5.20: The Richtex = 2.72 gm/cc, ore = 2.75gm/cc (solid), and ore = 2.80 gm/cc 

(dashed). Calculated does not fit the observed gravity (dotted line). 
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Figure 5.21: The Richtex = 2.72 gm/cc, ore = 2.85 gm/cc (solid line), and ore = 2.80 

gm/cc (dashed line).  

 

5.2 Magnetic Data Results 

Total magnetic intensity (TMI) 

The total magnetic intensity anomalies in the study (figure 5.22) area range 

between 49884 and 50441 nT. Maximum magnetic values (pink color) of 50441 nT are 

observed over granites and have a structure tend of NE-SW. The elongated anomalies 

(red and pink colors) are associated with the NW-SE Jurassic dikes. In general, the 

metasedimentary formation shows a lower magnetic intensity than the metavolcanic 

formation.  
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Figure 5.22: Total magnetic intensity of the study area. 

 

Reduce to the pole (RTP) 

The total magnetic intensity was analyzed using the reduced to pole method to 

reduce the effect of magnetic variations caused by the dipole magnetic field. This filter 

migrates the observed field from observation inclination and declination to what the field 

would look like at the magnetic pole. This aids in the interpretation since any asymmetry 

in the reduced to pole field can then be attributed to source geometry and/or magnetic 

properties (Geosoft). The anomalies in the RTP magnetic map will be directly located 

above the source. This method uses inclination and declination values of 630 and -7.200. 
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In general, the RTP map (figure 5.24) shows no difference from the total 

magnetic intensity map, except for some anomalies exposed in the study area. Due to the 

inclination and declination removal, many high anomalies are present in the central part 

of the area. The RTP map highlights ENE trends in the central part and under the coastal 

plain which may be related to Alleghanian (alkaline) dikes or ore bodies.  

The NE-SW and NW-SE trends (Alleghanian and Jurassic dikes respectively) 

have high values of magnetic anomalies between 50050 to 50300 nT. The highest value 

is about 50444 nT and is located in the northern part and directed NE-SW, related to the 

Pageland granite (felsic intrusion).  

A profile over the 2-D density model (Figure 5.23) shows the total field and 

Reduced to Pole (RTP) magnetic anomalies. An RTP anomaly is located directly above 

the dike.  Small anomalies over ore bodies are also suggested in the total field and RTP 

magnetic anomaly profiles.  

 

Figure 5.23: The magnetic anomaly of the total field before and after the reduced to the 

magnetic pole is applied over the 2-D density model. The anomaly of the reduced to 

magnetic pole is directly located above the source. North is on the left side of the profile. 
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Figure 5.24: The reduced to the pole map (RTP). 

 

Shaded-relief: 

The shaded relief map of reduce to pole (figure 5.25) presents many linear 

magnetic anomalies that were not apparent on the TMI map. The shaded relief map 

clearly illuminates the Pageland granite contact.  The map indicates the NW-SE and NE-

SW structural trends, the Jurassic and Alleghanian dikes, respectively. Several minor 

structural trends are also shown in figure 5.25, associated with a possible faults and/or 

geological contacts.  
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Figure 5.25: The shaded relief map of reduced to the magnetic pole. 

 

Power spectrum technique (PS): 

The 2-dimensional power spectrum (figure 5.26) shows a deep-seated source (low 

frequency) with a wavenumber < 0.9. The average depths of the low frequency magnetic 

sources range between 1 and 0.5 km. The high frequency end represents the residual 

components of total magnetic intensity, the average depths of the high frequency 

magnetic sources is between 0.1 and 0.5 km. 

The regional map (figure 5.27) shows the same main structural trends of total 

magnetic intensity (TMI) but with different anomalies, value ranges, and smoothness. 

The map shows two major deep-seated features, NW-SE Jurassic dikes and felsic 

intrusion (granites).  
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The residual total magnetic intensity (TMI) map (figure 5.28) shows magnetic 

values ranging between -100 and 145 nT. The Alleghanian dikes are enhanced and 

interpreted as NE-SW trends in the western part of the study area. The narrow elongated 

magnetic highs trending NW-SE are associated with diabase (Jurassic) dikes. Also, 

possible faults may offset the diabase dikes. 

 

Figure 5.26: 2-D power spectrum of total magnetic intensity data. 
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Figure 5.27: The regional total magnetic intensity map. 

 

 

Figure 5.28: The residual total magnetic intensity map.  
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Analytical signal (AS) method: 

As the analytic signal (AS) calculation is independent of the directions of the 

Earth's magnetic field, anomalies will be correctly shifted to the top of the source bodies, 

no need to apply the AS over the RTP map. The analytic signal map in figure 5.29 shows 

maximum anomalies over the source edge contacts and the main trend directions of these 

anomalies.  

The AS map shows the diabase dikes trending NW-SE as well as the granite edge 

contact (felsic intrusive). The directions and positions of these anomalies are similar to 

those in the TDR and shaded relief maps of total magnetic intensity. The ENE-trending 

anomalies in the central part of the study area that were highlighted after applying the 

reduced to pole filter are seen in the AS map (figure 5.29). 

Upward continuation of 70 m is applied to the AS of total magnetic field map to 

filter out the effects of near-surface features that are unlikely to be interest and for a 

better demonstration of the contact location (figure5.30). Morrell et al. 2011, used 

analytical signal to define the boundaries of a magnetic quiet zone that they interpreted as 

an area of hydrothermal alteration. A circular low analytic signal in the northeast part of 

the study area indicates the hydrothermal alteration zone of the Brewer Mine area. In the 

central part of the study area a similar analytic signal feature to the Brewer Mine may 

also be an area of hydrothermally altered rock. 

In order to improve the dynamic resolution of the image, the color scale was 

changed to highlight the maximum anomalies as shown in figure 5.31. The dikes and 

felsic intrusive contacts are clearly seen in the upward continuation of the AS map. 
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Figure 5.29: Analytic signal of total magnetic intensity map.  

 

 

Figure 5.30: Upward continuation of 70 m applied to the AS of TMI map. 
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Figure 5.31: Upward continuation of 70 m applied on AS of TMI map. To improve the 

dynamic resolution, the color scale was changed to highlight the maximum anomalies. 

 

Tilt Derivative (TDR method):  

The tilt derivative was applied to the RTP map (figure 5.32) showing that the 

main subsurface structural trends in the study area are NE-SW and NW-SE, alkaline and 

diabase dikes, respectively. The felsic intrusive contact is also delineated. 

The upward continued filter of 70 m was applied on the tilt derivative of the RTP 

map (figure 5.33) to filter out the effects of near-surface features and for a better 

demonstration of the contact locations. Figure 5.33 shows that the tilt derivative of RTP 

can be used for the location of the anomaly sources assuming a vertical contact model 

and the resolution of structural directions is better than figure 5.32. 
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The geological map (mafic dikes, possible faults, and the felsic intrusion) have 

been superimposed over the upward continuation of 70 m of the tilt derivative of the 

reduced to pole map.  In figure 5.34, it is clear the tilt derivative highlights the anomaly 

sources of the study area. The anomalies in the AS of TMI map have variable peak 

intensities while the TDR of the RTP map have constant peak intensities. 

The upward continuation of 50m of the tilt derivative of the RTP map in figure 

5.35 shows some structural trends that have not been identified in the geological map. 

These structures in the central and eastern part of the study area have NW and NNE 

trends. Some of these trends are also visible on the shaded relief map. 

 

Figure 5.32: Tilt derivative of the reduced to the pole. 
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Figure 5.33: Upward continuation of 70 m of the TDR of the reduced to the pole map. 

 

Figure 5.34: Geological map superimposed on the upward continuation of 70 m of the 

TDR of the RTP map. The white lines are possible faults. The thick line is the felsic 

intrusive. The NW-SE lines are mafic dikes. 
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Figure 5.35: Geological map superimposed on the upward continuation of 30 m of the 

TDR of the residual RTP map. The white lines are possible faults. The thick line is the 

felsic intrusive. The NW-SE lines are the mafic dikes. 

 

Source Parameter Image method (SPI): 

The local wavenumber like the analytic signal is independent of source 

magnetization and dip effects; however, the source position, depth and horizontal 

location, can be determined directly from the magnetic field (Pilkington and Keating 

2006). 

The SPI can be applied on the total magnetic intensity map to estimate the depth 

of the magnetic sources. Figure 5.36 shows that the magnetic source depths ranging from 

7 to 1188 m (figure B.2). The result is very close to the average depth of the power 

spectrum method. The SPI map shows the same structure as the tilt derivative of the RTP 

map. It shows an oval pattern in the northeast part of the study area around the Brewer 
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Mine area that may be related to the Richtex/Persimmon Fork contact, the hydrothermal 

alteration zone or the metamorphic halo. Also, line 1-1’ on the SPI map shows the same 

structural trend as the tilt derivative of the residual RTP map, this line has not been 

interpreted in the geological map. In figure 5.37 the geological map is superimposed on 

the source parameter image of the TMI map. 

 

Figure 5.36: The SPI of TMI map. The sources depths range between 8 and 1188 m.  

1 

1’ 
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Figure 5.37: Geological map superimposed on the SPI of the TMI. The white lines are 

possible faults. The thick line is the felsic intrusive. The NW-SE lines are the mafic 

dikes. 

 

3-D Euler deconvolution (ED): 

The Euler deconvolution (ED) method was applied on the analytic signal (AS) 

and the total magnetic intensity (TMI). The positive depth values of the ED are below sea 

level and minus values are above sea level. 

The ED of the upward continuation of the analytic signal of TMI map (figure 

5.38) shows good agreement with the analytic signal map. The solution depths of the ED 

contacts range from -155.5 to 363.3 m. As indicated from the ED method the yellow 

contacts show depths between 0 to 100 m (below the sea level). Comparisons of the Euler 

Deconvolution (ED) method and the analytic signal solutions show reasonable 

agreement. Both methods are useful, where AS can be used to locate magnetic contacts, 

and their geometry, the ED can give a more information about the structural information 
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and depths (Roest et al. 1992; Ndlovu et al. 2015).  In figure 5.39 the ED of TMI is 

superimposed on the upward continuation of 70 m of the AS of TMI map. The yellow 

contacts show depths between 0 and 100 m (below sea level). The ED of TMI’s solutions 

shows good agreement with analytic signal of TMI map solutions. Both figures indicate 

that the study area is affected mainly by two structural trends, NE and NW, and have 

similar contact depth results. Figure 5.40 shows the ED solutions plotted on the TMI 

map. 

In figure 5.41 the depth calculated from the tilt derivative is compared with the 

Euler deconvolution of the TMI and the Euler deconvolution of the analytic signal’s 

depth solutions (Table 5.3). The location of labels on the tilt derivative of the RTP map 

that were selected for depth estimation were compared with the closest points obtained 

from the Euler deconvolution and the Euler deconvolution of the upward continuation of 

70 m of the analytic signal of the TMI maps. A, B and D tilt derivative and Euler 

deconvolution of the TMI depth results are similar. C shows that the depth of the tilt 

derivative of the RTP is very close to the depth of the Euler deconvolution of the analytic 

signal. 

Table 5.3: Depth estimates based on the TDR, ED of TMI, and ED of AS. 

Label X Y TDR depth (m) ED depth of the TMI 

(m) 

ED of the AS of 

TMI depth (m) 

A 544250 3828600 97.28 94.62 50.70 

B 546250 3826950 98.8 80.17 78.43 

C 546550 3829700 135.40 66.89 131.64 

D 549250 3828050 154.44 140 80.93 
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Figure 5.38: Euler deconvolution solutions of the upward continuation of 70 m of the AS 

of TMI. The solution depths range between - 155.5 and 363.3 m. The SI=0, Depth tole = 

15%, Win. Size= 5, and flying height is 32m. 

 

 

Figure 5.39: Euler deconvolution solutions of TMI plotted on the upward continuation of 

70 m of the AS of TMI. The solution depths range between - 155.5 and 529 m. The SI=0, 

Depth tole = 15%, Win. Size= 5, and flying height is 32m. 
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Figure 5.40: Euler deconvolution solutions of the TMI plots on the TMI map. The 

solution depths range between - 155.5 and 529 m. The SI=0, Depth tolerance = 15%, 

Win. Size= 5, and flying height is 32m. 

 

 

Figure 5.41: Expanded view of the tilt derivative of the RTP map. The thick black 

contour line indicates the edge of the contact and localizes the contact location. The thin 

black contour lines are equal to - 45° and can be used for calculating depths on edges. For 

the best interpretation of depth estimation by the tilt derivative method, points (A to D) 

are selected. 
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5.3 Electromagnetic Data Results 

The digital database of the electromagnetic anomalies was gridded using a bi-

directional gridding algorithm with a grid cell of 10 m (figure 5.42). The conductivity 

grid as shown in figure 5.42 has some leveling problems (such as tie line leveling, lag 

corrections, base level corrections, etc.), so, a microlevelling filter using FFT 

Decorrugation is applied to remove non geological noise caused by long-wavelength 

noise along flight lines as recommended by Geosoft (Paterson Grant & Watson). The 

leveling error “noise” grid is calculated by applying two filters, the Butterworth high-pass 

filter combined with a directional cosine filter. The Butterworth high-pass filter is set to 

four times the line separation, while, the directional cosine filter is set to pass 

wavelengths only in the direction of the lines. The Butterworth passes wavelengths on the 

order of two to four line separations, such as would result from a line-to-line levelling 

error. Figure 5.43 shows the result of applied leveling correction to the conductivity grid 

after subtracting the levelling error grid from the original. 

Figure 5.44 shows cultural noises (roads and power lines) that had been defined 

by OceanaGold during the EM survey. To reduce electromagnetic noises from the raw 

data, a high pass filter was applied. The high pass image represents cultural noise as 

shown in figure 5.45. The final result was produced by subtracting the original data from 

the high pass image (figure 5.46), so, the data quality result was significantly improved.

 Figure 5.47 shows the lithologic boundary of the Ritchtex formation from the 

geological map superimposed on the conductivity map. High conductive anomalies are 

associated with the Ritchtex unit and the ore in the Haile Mine area. Also, a circular 

feature is clearly seen around the Brewer Mine area, which possibly indicates a contact.  
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Figure 5.48 and 5.49 show the conductivity associated with the ore bodies both 

before and after filtering. Note the correlation between the zones of high conductivity and 

the mapped ore bodies. The EM profile B-B’ is shown in figure 5.50. The profile 

indicates a high conductivity anomaly in the lower western part of the section that also 

correlates with the location of an ore body. 

 

Figure 5.42: The conductivity map. 

 

Figure 5.43: The leveling correction of the conductivity map. 
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Figure 5.44: The cultural noise (dotted lines) plotted on the conductivity map. 

 

Figure 5.45: The EM data after using a high pass filter to represent the noise. Black ovals 

indicate the observer noises that were defined from the dataset. Label A indicates a high 

tension power line from Google earth. 

A 
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Figure 5.46: Conductivity map after reducing the noise.  

 

Figure 5.47: The lithologic boundary of the metasedimentary formation (green color) 

superimposed on the conductivity map. The thick black line indicates the felsic intrusion. 
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Figure 5.48: A is the geological map of Haile Mine at 120 m above sea level. B is the 

unfiltered EM conductivity map. C is the geological map superimposed on the 

conductivity map. Note the correlation between the zones of high conductivity and the 

mapped ore bodies. 

 

 

Figure 5.49: The EM conductivity after HP filter and the geological map. Note the high 

EM signal associated with the ore location and trend.  

A B 

C 
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Figure 5.50: Cross section shows the conductivity over the B-B’ profile. A conductive 

anomaly in the lower western part of the section is associated with an ore body. A low 

conductive anomaly is located just south of the dike. Left side is north.
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CHAPTER 6 

DISCUSSION AND INTERPRETATION 

 The Bouguer map shows that the Pageland granite is characterized by low gravity 

anomalies in the northern section of the study area. High gravity anomalies to the west 

are related to the metavolcanic rocks and/or mafic dikes. The gravity anomalies over the 

Haile Mine area are related to the increase in the thickness of the metasedimentary 

section. Positive anomalies in the residual and analytic signal Bouguer gravity field 

correlate with the location of an ore body. The 2-D density forward model shows that the 

anomaly can be produced by 4% pyrite and molybdenite. 

              The total magnetic intensity (TMI) map is dominated by the NW-trending 

Jurassic dikes, while its tilt derivative and residual show both the Jurassic and 

Alleghanian dike trends. The analytic signal of TMI and shaded relief of RTP maps 

illuminate the edge contact of the Pageland granite. The magnetic survey shows no clear 

signal associated with the ore zones. This may be due to 1) the ore’s magnetite being 

affected by hydrothermal alteration similar to New Zealand (Morrell et al. 2011); 2) the 

low susceptibility of quartz and pyrite (table 6.1) that is associated with the 

mineralization zones; and 3) the stronger magnetic signal from the mafic dikes that 

dominates the magnetic field. Over the metasedimentary formation the tilt derivative map 

has a negative value and the analytic signal has a low anomaly.
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A circular structural feature is observed by the Source parameter image and the 

Euler deconvolution magnetic and gravity maps around the Brewer mine and in the 

central part of the study area. 

The cultural electromagnetic noise was reduced by applying a high pass filter. Ore 

bodies in the Haile mine area show high conductivity, while the intrusive felsic (Pageland 

granite) is associated with the lowest conductivity. A zone of high conductivity near the 

Brewer mine is surrounded by a circular zone of low conductivity.  

Table 6.1: The susceptibilities of various rocks and minerals. 

Material 
 

Susceptibility x 10-

3 (SI) 

Material 
 

Susceptibility x 10-

3 (SI) 

Quartz -0.01 Illmenite 300 – 3500 

Rock Salt -0.01 Magnetite 1200 - 19,200 

Calcite -0.001 - 0.01 Limestones 0 – 3 

Sphalerite 0.4 Sandstones 0 – 20 

Pyrite 0.05 – 5 Shales 0.01 – 15 

Rock Salt -0.01 Illmenite 300 – 3500 

Hematite 0.5 – 35 Magnetite 1200 - 19,200 

Limestones 0 – 3 Shales 0.01 – 15 

Sandstones 0 – 20 Schist 0.3 – 3 

Gneiss 0.1 - 25 Granite 0 - 50 

Slate 0 - 35 Gabbro 1 - 90 

Basalt 0.2 - 175 Peridotite 90 - 200 

from T.M. Boyd of the Colorado School of Mines 

 

The geological contacts map of the study area (figure 6.1) was drawing based on 

the ED (structural index= 0.5 and 1), tilt derivative, and analytic signal of TMI and 

shaded relief of RTP maps. The Ritchtex over the Haile Mine area, Au bearing alteration 

zones, and possible faults in figure 6.1 are the same as the geological map. 

http://galitzin.mines.edu/INTROGP/
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Figure 6.1: Geological map of the study area. (Upper map) Contacts and faults are based 

on the Euler deconvolution (structural index= 0.5 and 1), tilt derivative of the RTP, and 

analytic signal of the TMI and shaded relief of the RTP maps and the geological map by 

OceanaGold.  (Lower map) The lower map is the geological map based primarily on the 

geophysical data.
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CHAPTER 7 

CONCLUSIONS 

The goal of this research was to calibrate and test geophysical methods for the 

detection of disseminated sulfides in the area of the Haile Gold Mine, South Carolina. 

The work focused on the use of high resolution gravity, electromagnetic (EM) and 

magnetic data. Surprisingly, an apparent correlation was observed between high 

resolution gravity anomalies and an ore body in the Haile Mine area. EM methods also 

show promise for exploration for disseminated sulfides. While magnetic data was not 

apparently useful for direct detection of ore bodies in the Haile Mine area, it was very 

useful in defining the geometries of intrusive igneous plutons and dikes as well as an 

apparent zone of hydrothermal alteration around the Brewer Mine. Specific conclusions 

include:  

1. The interpretation of the gravity and magnetic data was enhanced by the 

use of tilt derivatives, reduced to pole anomalies (RTP), shaded relief, 

Power spectrum, Analytical signal, Source parameter imaging (SPI), 3-D 

Euler deconvolution, upward continuation, and 2-D forward density 

modeling. 

2. There is a strong regional correlation between high amplitude gravity and 

magnetic anomalies and the most productive gold mines in the Carolina 

terrane.
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3. Residual gravity anomalies, tilt derivatives, and analytic signal show 

positive anomalies correlated with the location of a disseminated ore body 

in the Haile Mine area. The observed gravity field over the ore body 

matched model predictions produced by 4% pyrite and molybdenite. 

4. Helicopter EM methods are effective in distinguishing sedimentary from 

volcanic-dominated sediments in the metamorphic rocks of the Carolina 

terrane.  

5. Electro magnetic (EM) anomalies are also spatially associated with the 

Haile ore bodies. Cultural signals in the EM data can be minimized with 

high pass filtering.  

6. The edges of the Pageland granite pluton are clearly illuminated by the 

shaded relief, tilt derivative, Euler deconvolution, and analytic signal of 

the high resolution magnetic field.  

7. The RTP magnetic field is dominated by NW-trending Jurassic mafic 

dikes as well as ENE-trending Alleghanian age alkaline dikes.  

8. An oval pattern in the magnetic SPI outlines the Brewer gold mine area, a 

zone of possible hydrothermal alteration.
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APPENDIX A: THE COSTAL PLAIN AND DIKES DISTRIBUTION IN SOUTH

 CAROLINA. 

 

The Atlantic coastal plain sediments extend from North Carolina to Alabama. 

Based on well data, the coastal plain increases in thickness to the southeast (A.1).  Based 

on the magnetic map, Jurassic dikes are oriented northwest-southeast and north-south 

(A.2). 

 

     Figure A.1: Coastal plain thickness map, from Popenoe and Zietz (1977).
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Figure A.2: Dike distribution map, from Popenoe and Zietz (1977).
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APPENDIX B: STATISTICS REPORT OF THE SOURCE PARAMETER IMAGE

 METHOD. 

 

The source parameter image depth estimate results are independent of the 

magnetic inclination, declination, dip, strike and any remanent magnetization. The 

statistic report of the SPI of the Bouguer (figure B.1) shows that the source depths range 

from 101 to 28965 m. The gravity SPI results are close to the average depth results of the 

power spectrum: 0.1 to 2 Km. The magnetic SPI results (figure B.2) show the source 

depths range from 8 to 1189 m. The magnetic power spectrum source depth results are 

similar: 100 to 1000 m. 

 

Figure B.1: SPI statistic report of Bouguer gravity.
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Figure B.2: SPI statistic report of Magnetic.
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APPENDIX C: EXPANDED VIEW OF THE CENTRAL PART OF THE STUDY

 AREA. 

 

The ENE trend that was highlighted by the RTP method is shown in Figure C.1. 

The ENE trend in the central part of the study area is clearly visible on the TDR, EM, 

AS, and shaded relief maps. A is the TMI map. B is the EM conductivity map. C is the 

shaded relief map.  D is the TDR of the RTP map. E is the AS of the TMI. 

 

Figure C.1: Expanded view of the central part of the study area. The plus tag indicates the 

location control point.  In B the point is located on a NE conductivity trend possibly 

located between two faults. This point shows a low TMI and higher signal on the RTP, 

tilt derivative, and AS.   
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APPENDIX D: EULER DECONVOLUTION TO ESTIMATE THE SOURCE

 DEPTHS FOR MAGNETIC AND GRAVITY ANOMALIES. 

 

The Euler Deconvolution (ED) method was applied to the total magnetic intensity 

and Bouguer maps. Structural indexes of 0, 0.5, 1, 2, and 3 were applied to represent 

contacts/faults, sill, dike, step, pipes, and spherical sources. The Euler Deconvolution 

solutions of the Bouguer gravity field (figure D.1) follows the TDR. The Euler 

Deconvolution solutions for the magnetic field (figure D.2) with a structural index of 0.5 

is represent a contact/fault model follow the Jurassic and Alleghanian dikes. The Euler 

Deconvolution solutions for a structural index of 1 (figure D.3) follow Jurassic dikes and 

the Pageland granite. For the dikes and sills depths range between 0 - 858 m below sea 

level. The Euler Deconvolution solutions for pipe sources (figure D.4) show depths 

ranging between 500 – 1346 m below sea level. The Euler Deconvolution solutions for a 

spherical model (figure D.5) clearly show the Pageland granite contact as well as dikes. 

Most of the solutions are less than 500 m below sea level.
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Figure D.1: The ED solutions for the gravity field superimposed on the TDR. The SI is 0 

which represents a sill/dike/step. The window size is 30. The results of the ED method 

follow the positive TDR. The green color indicates depths ranging between 223 and 1000 

m below sea level. 

 

Figure D.2: The ED solutions plotted on the TMI map. The window size is 10.  SI is 0.5. 
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Figure D.3: The Euler deconvolution solutions plotted on the TMI map. The window size 

is 20.  The SI is 1.  

 

Figure D.4: The Euler deconvolution solutions plotted on the TMI map. The window size 

is 10.  The SI is 2.  

 



www.manaraa.com

 

103 
 

 

Figure D.5: The Euler deconvolution solutions plotted on the TMI map. The window size 

is 10.  The SI is 3. 


	University of South Carolina
	Scholar Commons
	2017

	High Resolution Gravity, Helicopter Magnetic, and Electromagnetic Study, Haile Gold Mine, South Carolina
	Saad Saud Alarifi
	Recommended Citation


	tmp.1506005812.pdf.wCbZm

